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Magnetohydrodynamic Stabilization of a Stratified 
Cylindrical Flow 
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The effect of a uniform axial magnetic field on the stability of a stratified 
cylindrical flow of negligible viscosity and resistivity is examined. The fluid is 
assumed to be electrically conducting. The basic density and velocity fields are 
allowed to vary in two directions. The standard normal mode approach is used 
to treat the stability of the system. The complex wave speed of an unstable mode 
lies in the upper half of a semicircle whose diameter decreases with increasing 
magnetic field. A strong enough magnetic field can completely stabilize flows 
with unstable density stratification. 

1. I N T R O D U C T I O N  

The problem of  the stability o f  a circular fluid cylinder has at tracted 
considerable interest bo th  in plasma physics and in astrophysics. T h e  
classical work  on the linear stability of  a fluid column was performed by 
Lord  Rayleigh (1878), who showed that  a nonro ta t ing  column of  inviscid 
fluid is unstable to axisymmetric disturbances whose wavelength in the 
axial direction is greater than the circumference o f  the co lumn and stable 
to all nonaxisymmetr ic  disturbances. Later  Lord  Rayleigh (1892) also 
considered the effect o f  viscosity and showed that  in the limit o f  high 
viscosity the range o f  stable wave numbers  is unaltered. For  a nonro ta t ing  
column,  disturbances confined to planes perpendicular to the axis o f  the 
co lumn are always stable. Recently, the effect o f  a uni form axial magnetic 
field on the capillary instability o f  a rigidly rotat ing fluid column has been 
investigated (Wilson, 1992). 
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It is well known from liquid metal magnetohydrodynamics that for 
conducting liquid jets the magnetic field has the stabilizing effect of 
increasing the wavelength at which capillary instability appears and of 
decreasing the growth rate of unstable disturbances. In the theoretical case 
when the liquid is inviscid and of infinite electrical conductivity, it was 
found that the capillary instability can be completely suppressed by a 
magnetic field of sufficient strength (Chandrasekhar, 1961). The effect of a 
uniform axial magnetic field on the stability of cylindrical liquid bridges 
anchored between two conductor solid disks has been recently studied by 
Nicolfis (1992). 

The stability of stratified parallel flows has been extensively studied in 
view of its importance in oceanography and meteorology. A river flowing 
into the sea and a warm wind blowing over a cool one are two familiar 
examples of stratified flows which exist in our environment. Since the 
appearance of a paper by Howard (1961) on eigenvalue bounds for 
unstable waves in a plane--parallel flow of an inviscid incompressible 
stratified fluid, many subsequent papers generalizing the results have ap- 
peared in the literature. The extension of this problem to nondissipative 
parallel flows of an electrically conducting fluid permeated by an aligned 
magnetic field was made by Howard and Gupta (1962) for an incompress- 
ible fluid and Dandapat and Gupta (1975) for an incompressible fluid. 
Such studies of magnetohydrodynamic shear flows are relevant to the 
problem of the earth's magnetosphere. 

However, in the above-mentioned studies the velocity profiles for the 
basic steady flows vary in one direction, i.e., there are single-coordinate- 
dependent. But in nature the velocity of parallel flows usually varies in 
more than one direction. Recently Gupta (1992) examined the linear 
stability of a parallel stratified flow of an incompressible, inviscid, perfectly 
conducting fluid in the presence of a uniform aligned magnetic field such 
that the basic density and velocity fields are allowed to vary in two 
directions. In the present work we extend the method used by Gupta (1992) 
for a rigid channel with rectangular cross section to include a rigid one with 
two concentric circles as cross section. This case is more interesting than 
the one studied by Gupta (1992). 

2. PROBLEM FORMULATION AND LINEARIZED 
PERTURBATION EQUATIONS 

We consider a layer of electrically conducting fluid confined between 
two vertical coaxial rigid cylinders which are infinitely long. Cylindrical 
polar coordinates (r, 0, z) are used, the z axis being taken upward along the 
common axis of the rigid cylinder. The inner and outer rigid cylinders are 
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fixed. They are of radii R1 and R2, respectively. The layer is subjected to a 
uniform magnetic field of intensity Ho directed along the common axis of 
the cylinders. 

In order to study the hydromagnetic stability of the problem, the 
following additional assumptions will be considered: 

(a) The basic flow is unidirectional with velocity Wo(r, 0) along the z 
axis and in the presence of a potential force field G(r, 0). 

(b) The liquid is isothermal, inviscid, and incompressible, with density 
and pressure distributions po(r, O) and Po(r, 0), respectively, and 
its magnetic permeability is #e. 

(C) The magnetic pressure is defined as H = P + fie [HI2/8/17, where P is 
the fluid pressure and H is the magnetic field. 

(d) The displacement currents in Maxwell's equations are ignored. 
(e) The linear stability theory is used by considering infinitesimal 

perturbations. 

The pressure balance requirement gives 

0Ho OG ~3IIo OG 
Or = Po -~r' O0 = Po ' ~  (1) 

which lead to the following constraint on the density stratification along r 
and 0 directions: 

Opo OG Opo OG 
00 Or Or O0 

(2) 

In the perturbed state the velocity, pressure, density, and magnetic 
field are taken as, respectively, 

(a, ~, ~ + Wo),  n o + f l ,  P o + L  Oqr, ~qo, ~q~ + no) 

Assuming the flow to be nondissipative, we have the linearized per ba- 
tion magnetohydrodynamic equations of momentum (Chandrase~nar, 
1961) 

-I- 
aaWo 

-~r 

raa ~ a~_  arl ~-~n~ ~aa 
Po~,~-l- OOz ) -  ar 4n a~-+P-~r (3) 

Po +W~ = r 00 t 4n Oz erO-O (4) 

+ 7 - - ~ - + W ~  = az ~ Oz (5) 
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The equation of mass consel, ltion is 

8 ~ 8~ 8 
8S (ru) + ~ + ~z (rff0 = 0 (6) 

and the condition of incompressibility and nondiffusing impose 

~ + . ~ r  +rTU+ Wo~z =o (7) 

The components of the magnetic induction equation are 

8/r-Tr W0 8/'7 r 8U 
8--7 + ~ = H 0 ~  (8) 

8a~ 8~  8~ 
8--t- + Wo --~-z = Ho ~--~z (9) 

8.az Wo 8/~=~176 aoSWo 8r 
..... ~'; + -~z  t~r + --r ~80 + H~ --8z (10) 

along with the solenoidal condition (V- H = 0) for the magnetic field 

~ (r/7~) 8/-7~ + c3 (rHz) = 0 ( l l )  
or + ~ 8z 

These are the equations which describe the linearized problem at hand. 
In spite of the enormous simplification which results from linearization, a 
general analysis of these equations is still lacking. They do, however, 
provide the starting point for a number of important investigations based 
on various additional simplifying assumptions. 

A substantial simplification can be achieved by making a normal mode 
analysis in which all of the disturbances are assumed to depend on t and z 
through a factor of the form exp[ik(z - st)], where k is the wavenumber in 
the axial direction and the temporal exponent (s = s~ + si) will be complex 
and is to be determined in terms of the other parameters in the problem. 
The problem is linearly stable if s~ -< 0 and linearly unstable if sr > 0. Thus, 
we let 

f (r ,  z, O; 0 = f(r ,  O) exp[ik(z - s o l  (12) 

where f stands for any perturbed quantity. 
The amplitude of the normal modes satisfy the following equations: 

po(ik(Wo -- s)u) = _ dl'I___~_ +__~u HoH~ + 8G (13) 

po(ik(IVo - s)v) = 1 8H ik#r p 8G - - r  8--ff +--4-~r~ H~ +r"ffO (14) 



MIlD Stabilization of Stratified Cylindrical Flow 19~ 

8r r-b-g) -ikn+-~-HoH~ 
% 

8v 8 (ru) + ~ + ikrw = 0 
Or 

ik(Wo -- s)p + u 
u Opo 

o r  

It,= a o u  

(Wo - s) 

HoV 

(15) 

(16) 

(17) 

(~8) 

(19) 

- -  + ikHow (20) 

(w0- s) 
OWo ~o OWo 

ik(Wo - s)n~ = ~ T r  ~ r oo 
~r(rH, ) OIls + -~-  + ikrH~ = 0 (21) 

It can be easily verified that when the expressions for Hr, Ho, and H, from 
(18)-(20) are substituted in (21), the resulting equation is consistent with 
(16). Further, the elimination of Hr, H o, and H, from (15) and (18)-(20) 
yields 

V] 
poll (W-L-_ s)i][ik(Wo- s)w + u--gf-rOW~ v OW~ + ;--~-[ -- -ikI1 (22) 

where VA, the Alfv6n velocity in the basic state, is given by 

v5 ~Hg = 4~po (23) 

By making use of the substitutions 

iu iv 
t /= k ( W - s ) '  r  k ( W - s )  (24) 

so we find that (17) becomes 

p= 
- 'TWr -"; O0 / (25) 

Evidently t/and ~ play the role of Lagrangian displacements. Substitution 
of (24) and (25) in (13) and (14) gives, on using (19) and (20), 

O~H= { "~r ~r ; ~1 r O0 Or 
Or P~176 - s)2 - -  V~] ?Po 3G) 1 0po O__G ~ (26) 

1 8rI = [ook~[(Wo-s) 2 -  v~] 1 80o OG~. 10oo 9G 
r 8--0 1 r2 ~ j ~  r Or 80 (27) 
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Furthermore. when (16) and (24) are used in (22). the result is 

rio 
1I = po[(go - s) 2 - vA]Lr Or (rlr) + r OrJ (28) 

The boundary conditions are the vanishing of the normal component 
of the velocity and the tangential component of the magnetic field on the 
rigid boundaries so that 

= 0 and ~ = 0 on r = R1, R2 (29) 

We now integrate the identity 

; N ( ~ 0 n ) + ~  = O-g-r+-;-~)+-; N(rO+ (30) 

over the flow domain D in the x - y  plane, where an overbar denotes the 
complex conjugate. By Green's theorem 

~ l [ ~ - - ~ ( r f l I I ) + ~ ( ~ I I ) ] d a = I = R I I ( f l r d O - ~ d r )  

D 

where da = r dr dO is the element area of the domain D. Clearly the line 
integral in (31) vanishes by virtue of the boundary conditions (29). Thus by 
(30) 

If(rTori ~-0ri', --~r + r - - ~ ) d a + # - ~ ( ~ - - ~ ( r ~ , + ~ ) d a = O  (32, 

D D 

Substitution of (26)-(28) in (32) gives on simplification 

f [(Wo - s) 2 - v ] ]a  da = F (33) 

D 

where 

1 a r )  a~121 
+ lJ 

\,9o/ i Or ,.-gg aa 
D 

Clearly Q is positive definite. 

(34) 

(35) 
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3. INSTABILITY P A R A M E T E R S  

Consider the case of an unstable density stratification along the 0 axis 
so that Opo/O0 > 0. Thus, if aG/O0 ~ O, then (35) shows that F > 0. Since 
(2) shows that (OG/~r)(~po/Or)- l = (aG/OO)(Opo/00) - ~, it follows from (35) 
that when aG/Or > 0 and apo/ar (or when aG/Or < 0 and Opo/Or < 0) we 
must have F > 0. As a matter of fact, (2) implies that a stable or unstable 
stratification along the 0 axis puts a constraint on the density stratification 
along the r axis. 

Thus when F > 0, we find from (33) upon setting s =s, +si and 
equating real and imaginary parts 

f f [(Wo --s,) 2 - s~ - VZA]Q da = F ~ 0 (36) 

D 

2sl [ t (Wo - s,)Q da = 0 (37) 

D 

Let (Wo)~ax and (Wo)mi. be the upper bounds of Wo(r, O) in D. Then 
clearly we obtain 

[ [ [ W o  -- (Wo)maxl[Wo - (Wo)mi,]Q da ~ 0 (38) 

D 
Now using (37) in (36) gives 

ff ff (Wo)2Q da = F + (S2r + S, + V~)Q da (39) 

D D 

Finally if we combine (38) and (39), we find 

{ S  2 "{- S 2 4 -  V 2 - -  S r [(Wo)ma x "t- (Wo)min] --1- (Wo)max(Wo)min} I I  Q da ~ - F  

~ '  (40) 

Since Q is positive definite and F ~ 0, it follows from (40) that 

{S 2 -I -,$2 + V 2 -- Sr((Wo)max -~ (Wo)min) + (Wo)max(Wo)min} <: 0 

which can be written as 

l (Wo)rain]} ..]_oo 2 2  {2[(Wo)max__(Wo)min]} 2 V 2 (41) s, - ~ [(Wo)~ax + ~ 

Thus the complex wave speed s for the unstable wave (with s,. > 0) must 
lie in a semicircle in the upper half-plane with center at the point 
(~[(Wo)~ + (Wo)~j ,  0) and radius ({�89 - (W0)m~,]} z -- I'~A) ~/z. 
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Since the radius of this semicircle decreases with increase in VA, it follows 
that an axial magnetic field exerts a stabilizing influence on the flow by 
reducing the zone of instability. 

A novel fact emerging from (41) is that when VA >�89 
(Wo)mi.] the semicircle (within which the complex wave speed of an 
unstable mode lies) collapses. Thus when the Alfv~n speed of the axial 
magnetic field exceeds �89 (W0)min], the flow with a potentially 
unstable density stratification is completely stabilized. 
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